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Abstract

This seminar paper covers the macroeconomic development of Japan and the

compatibility of two di↵erent RBC models with the recovered statistics.

The first section covers the computation of relevant statistics for Japan and the in-

terpretation of these results. In order to do so, data inputs for all relevant variables

had to be found. For most of the following computation, the open-source statistical

software gretl was used. The data has been detrended and relevant macroeconomic

statistics were recovered. Additionally, TFP was computed as Solow residual on

basis of two di↵erent production functions.

The second section covers the calibration of a simple stochastic RBC model. Later,

the statistics generated by the model are compared to those recovered in the first

part. It ends with a conclusion about the validity of the used model.

The third section covers the solution of an RBC model with endogenous labor

by hand and in Dynare. Later, the statistics generated by simulating the model are

compared to those recovered in the first part. It ends with a conclusion about the

validity of the used model, how it improved and what can still be changed in order

to improve its performance.
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1 Data Work

1.1 Recovering Relevant Macroeconomic Data

Since Japan is a long-standing member of the Organisation for Economic Co-operation
and Development (OECD), it was straightforward to search for data in their statistical
database. Hence, most of the data was extracted from the OECD Economic Outlook
No. 98 as at November 2015.

Quarterly data from Q1 1960 to Q4 2017 (estimates) was used and all variables (ex-
cept for Nt) were converted in Yen 2005 units.

1.1.1 Gross Domestic Product

Data on Japan‘s Gross Domestic Product (GDP) as proxy for what is Yt was recovered
from the OECD‘s Economic Outlook 98 as ”Gross domestic product, volume, market
prices”.

The data was provided in quarterly frequency, fitted to the o�cial annual figures. The
procedure used by the OECD‘s statistical o�ce to recover data in higher frequency fol-
lows the method presented by Chow and Lin1.

After being interpolated into higher frequency, seasonal adjustment was conducted by
the OECD. To do so, the United States Bureau of the Census‘ X 12 ARIMA (Autore-
gressive Integrated Moving Average) seasonal adjustment program was used.

The data was presented in 2005 Yen units.

1.1.2 Private Consumption

Data on Japan‘s private consumption as proxy for what is Ct was recovered from the
OECD‘s Economic Outlook 98 as ”Private final consumption expenditure, volume”.

Just as the data on GDP, private final consumption expenditure was provided in quar-
terly frequency, seasonally adjusted and in 2005 Yen.

1.1.3 Private Investment

Data on Japan‘s private investment as proxy for what is It was recovered from the
OECD‘s Economic Outlook 98 as ”Gross fixed capital formation, total, volume”.

Gross fixed capital formation (GFCF) ”is measured by the total value of a producer‘s

1Chow, G. C. and A.-l. Lin (1971) ”Best linear unbiased interpolation, distribution, and extrapolation
of time series by related series”, The Review of Economics and Statistics 53(4): 372-375.
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acquisitions, less disposals, of fixed assets during the accounting period”2. It therefore
is not a measure of total investment since i.e. investment in human capital or financial
assets is neglected.

Nevertheless, this data set was chosen as proxy for It since instances like the IMF en-
courage researchers to use GFCF as proxy for private investment3.

Just like the previous data series extracted from the OECD‘s Economic Outlook 98,
private investment was already in quarterly frequency, seasonally adjusted and in 2005
Yen.

1.1.4 Labor Supply

Data on Japan‘s labor supply as proxy for what is Nt was recovered from the OECD‘s
Economic Outlook 98 as ”Total employment”.

The data was in quarterly frequency and in person units. Since seasonal adjustment
was missing in this dataset, it had to be conducted afterwards. In order to compute data
consistent with the previously recovered, the X 12 ARIMA process had to be applied.
This was done by using the gretl add-on package ”x12a”, which installs a function that
allows for bespoke analysis.

1.1.5 Capital Stock

Data on Japan‘s capital stock as proxy for what is Kt was recovered from the European
Commission Annual Macro-Economic Database as ”Net capital stock at 2010 prices: to-
tal economy - Mrd JPY - Japan”.

Since the values are displayed in 2010 Yen, they had to be converted into 2005 Yen
before being used for the analysis. This has been done by using a deflator:

K

t,2005Y en

= K

t,2010Y en

Deflator2005Y en

Deflator2010Y en

Since the data was provided in annual frequency, a timeseries disaggregation had to
be conducted as well. This was done by using gretl‘s built in GUI function ”Expand
data”. This method enables to neglect the seasonal adjustment, since no quarterly data
was used to interpolate annual data (as with Chow Lin) but the annual data itself. This
means that no quarterly noise was introduced, which might lead to lower than actual
standard deviation.

2Glossary of statistical terms, OECD, https://stats.oecd.org/glossary/detail.asp?ID=1171 , reviewed
at 9.6.2016

3http://datahelp.imf.org/knowledgebase/articles/536206-where-do-i-find-data-on-private-
investment , reviewed at 9.6.2016
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1.2 Detrending the Data

1.2.1 Introducting the Hodrick-Prescott-Filter

In order to detrend the data, natural logarithms of the recovered data had to be taken.

This enabled to apply the Hodrick-Prescott-Filter, which minimizes the magnitude4:

P
T

t=1(yt � g

t

)2 + �

P
T�1
t=2 [(g

t+1 � g

t

)� (g
t

� g

t�1)]2

y

t

= log of the data in period t; g
t

= log of the growth component in period t

When working with data in quarterly frequency, the value for � proposed by Hodrick
and Prescott5 is � = 1600.

1.2.2 Detrended Data

Applying the Hodrick-Prescott-Filter to the recovered data decomposed the variable into
its trend and cyclical component. The results are being displayed along with information
about highly relevant historical events that help to explain some remarkable outliers or
uniqueness in development.

The impact of the oil crisis in 1973 that resulted from the Fourth Middle Eastern War
can be seen in all cyclical components. While the import ratio of oil for OECD countries
averaged at 67%, Japan imported 99.7% of its oil used either for consumption or for
production of i.e. plastics6. This made it highly dependent on the market prices which
approximately four-folded from 3$ to nearly 12$.
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Figure 1: The logarithmized Capital Stock and its Trend

4Peter Birch Sorensen and Hans Jorgen Whitta-Jacobsen, Introducing Advanced Macro-economics:
Growth & Business Cycles, first edition, McGraw-Hill 2005, pages 403-405

5Hodrick, Robert J, and Edward C. Prescott. ”Postwar U.S. Business Cycles: An Empirical Investi-
gation.” Journal of Money, Credit, and Banking. Vol. 29, No. 1, February 1997, pp. 1-16., available at:
http://www.jstor.org/stable/2953682

6Kenichi Ohno, The Path Traveled by Japan as a Developing Country: Economic Growth from Edo
to Heisei, Yuhikaku Publishing Co. Ltd., Tokyo, 2005, page 186.
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The impact of the financial crisis in 2008 on Japan‘s private investment can be seen
very clearly as well even though its relatively resilient financial system initially limited the
direct impact. But since over 90% of Japan‘s exports consisted of highly income-elastic
industrial supplies, capital goods, and consumer durables, it has been very responsive to
output shocks in the advanced markets of the United States and Western Europe. One
example is constituted by the exports to Emerging Asia as Japan‘s largest export mar-
ket. Japan mostly exported intermediate goods used in the production of final goods.
As demand for these goods in the Western World began to drop, demand for the inter-
mediate Japanese goods declined as well7.
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Figure 2: The logarithmized Private Investment and its Trend

What is remarkable to notice is that the Japanese economic post-war system was
built on long-term relationships. Features such as lifetime employment help to explain
the very small deviations of total employment over time.
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Figure 3: The logarithmized Total Employment and its Trend

It is argued that this system started to become obsolete by the 1970s. According
to the view of some economists, Japan should have shifted its economic system to a

7Kawai, M., and S. Takagi. 2009. Why was Japan Hit So Hard by the Global Finan-
cial Crisis? ADBI Working Paper 153. Tokyo: Asian Development Bank Institute. Available:
http://www.adbi.org/working-paper/2009/10/05/3343.japan.gfc/

4



more market-based one, in order to adapt to its industrial society that emerged over the
previous 20 years8.
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Figure 4: The logarithmized GDP and its Trend

The logarithmized data and growth component show approximately three ”states of
growth”. It starts with the catching-up process after World War II and the Korean
War until 1970, which is characterized by an extraordinary high growth rate of ap-
proximately 10%. After catching up with other developed economies, the growth rate
decreased in 1971 to an average of about 4%. A slowdown in growth is common for ma-
turing economies. Additionally, inflation accelerated in all industrial countries around
that time9. The well known ”lost decade” started around 1991 and came with an ex-
tremely low growth rate of GDP at near zero as seen in the graph.
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Figure 5: The logarithmized Private Consumption and its Trend

Private consumption accounts for about 60 percent of Japan‘s GDP, and therefore
holds the key to the country‘s economic health. The lack of consumer confidence is
crippling economic activity. The bearish sentiment is said to be one of the major factors

8Kenichi Ohno, The Path Traveled by Japan as a Developing Country: Economic Growth from Edo
to Heisei, Yuhikaku Publishing Co. Ltd., Tokyo, 2005. page 190

9Kenichi Ohno, The Path Traveled by Japan as a Developing Country: Economic Growth from Edo
to Heisei, Yuhikaku Publishing Co. Ltd., Tokyo, 2005, pages 162 and 184
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that prevent the economy from being actively simulated. It is now the governments
responsibility to restore public confidence10.

Plotting all cyclical components of the variables together creates the following diagram,
allowing for initial guesses about volatility, leads and lags.
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Figure 6: Cyclical Components of all Variables

The following statistical analyses are all covering the data recovered for the cyclical
components. This holds true for the comparison against model generated data as well.

1.3 Calculating the Basic Statistics

At first, the standard deviation was analyzed. Calculating the standard deviation follows:

�

x

=
q

1
N

P
N

i=1(xi

� µ

x

)2

In order to provide a convenient way to compare the standard deviation, it was converted
to relative standard deviation to GDP. As can be seen in the chart above, investment
clearly has the highest standard deviation and is the only variable that is more volatile
than GDP.

10Pradyumna Prasad Karan, Japan in the twenty-first century: Environment, Economy, and Society,
The University Press of Kentucky 2005, page 318
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Afterwards, the correlation of the variables with GDP were examined since it is used
as main indicator of economic activity. The correlation of given variables x

t

, c

t

is defined
as:

⇢

x

t

,c

t

= �

xc

�

x

�

c

=
P

T

t=1(xt

�µ

x

)(c
t

�µ

c

)pP
T

t=1(xt

�µ

x

)2
pP

T

t=1(ct�µ

c

)2

It can be seen that consumption has a lower standard deviation than GDP. This can
mostly be attributed to the fact, that consumption decisions are mostly based on av-
erages of previous income changes11. Capital and labor both have even lower standard
deviations.

GDP Consumption Capital Investment Labor
Std 0.0153 0.0123 0.0049 0.0343 0.0048
Rel. Std to GDP 1.0000 0.8002 0.3222 2.2385 0.3165
Corr. with GDP 1.0000 0.7454 0.3086 0.8601 0.4585

Table 1: Standard Deviation, Rel. Std. and Correlation with GDP

It is straightforward to see that all variables move approximately in the same direc-
tion, since all correlations are positive. Nt and Kt have lower correlations with GDP
than the residual variables.

Autocorrelation is the correlation of a variable with its own lagged value. It is used
to describe the persistence of a variable.

Lag GDP Consumption Capital Investment Labor
t+1 0,7789 0.5260 0.7196 0.8245 0.7753
t+2 0.5514 0.3981 0.4721 0.6465 0.6369
t+3 0.3275 0.2780 0.3306 0.4713 0.4522
t+4 0.0967 -0.0167 0.3065 0.2897 0.2843
t+5 -0.0610 -0.1289 0.2829 0.1364 0.1470

Table 2: Observed Autocorrelation

From the table, it can be seen that investment has the highest persistence over three
quarters. Afterwards, capital takes the spot.

Whether a variable is considered as leading or lagging is determined using crosscor-
relations with current GDP over time. The correlation of current values is defined as
⇢

x

t

,c

t

. If the lagging correlation ⇢

x

t+a

,c

t

with a lag of the size a is greater than the current
correlation, the variable x will be considered a lagging variable. This means, the future
value of this variable has a greater correlation with current GDP than the current value
of the variable has.

11Campbell, John Y., and Angus Deaton, ”Is Consumption Too Smooth?”, Review of Economic
Studies 56 (July 1989), 357-373
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The same holds for leading variables with the leading correlation ⇢

x

t�a

,c

t

. In this case,
a previous value of the variable has a greater correlation with current GDP than its
current value. Leading indicators are thus useful in the attempt to estimate or predict
future GDP.

Lag Consumption Capital Investment Labor
t-5 -0.0029 -0.2111 0.0317 -0.1744
t-4 0.1415 -0.1443 0.1632 -0.1116
t-3 0.3582 -0.0479 0.3420 0.0282
t-2 0.4620 0.0804 0.5083 0.1853
t-1 0.6063 0.2437 0.6977 0.3476
t 0.7457 0.4071 0.8607 0.4708

t+1 0.4863 0.5338 0.7811 0.5227
t+2 0.3224 0.6087 0.6478 0.5329
t+3 0.1709 0.6324 0.4720 0.4690
t+4 -0.0222 0.6088 0.2766 0.3569
t+5 -0.1102 0.5545 0.0889 0.1959

Table 3: Observed Crosscorrelation

The shown data can also be presented in a chart, allowing for easier and faster
identification of the leading and lagging variables.
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Figure 7: Observed Crosscorrelation

Future capital has a higher correlation with current GDP. This finding supports cur-
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rent theory, declaring capital as lagging variable. Capital is a lagging variable partly due
to its time-to-build feature12.

Investment has the highest correlation with GDP in the absence of lags and is thus
a coincident variable. This finding does support current macroeconomic theory since in-
vestment is widely accepted as a leading variable only if all sorts of investment are being
taken into account. Keeping in mind that only GFCF was used as proxy for investment,
it is obvious that this is not the case; investment in financial assets (e.g. investment in
stocks that typically rises prior to GDP13) is missing.

Labor is a lagging variable since its correlation of future values with current GDP is
higher than of current values. It has to be remembered that total employment was used
as proxy for labor. One possible explanation for why labor is a lagging variable might
be that employers can not and do not want to fire their employees as soon as output
drops. After investing in an employee, the representative firm would prefer to decrease
the hours worked or implement a part-time contract to firing the employee right away
in order not to loose the upfront investment in training and the accumulated expertise
of this particular employee14.

Consumption is neither a clearly leading or lagging variable but coincident.

1.4 Estimating Total Factor Productivity

There are two di↵erent approaches to recover total factor productivity.

1.4.1 First Approach

The first approach was based on the following production function:

Y

t

= e

A

t

K

t

Recovering the total factor productivity first required rearrangement of the given equa-
tion to:

A

t

= ln(Y
t

)� ln(K
t

)

This formula was applied to the undetrended data. Running a linear regression on
At over time yielded:

12Ralph Winkler, Ulrich Brandt-Pollmann, Ulf Moslener and Johannes Schlöder, On the Transition
from Instantaneous to Time-Lagged Capital Accumulation - The Case of Leontief Type Production
Functions, Discussion Paper No. 05-30, Centre for European Economic Research

13M. Burda and C. Wyplosz, Macroeconomics - A European Text, sixth edition, Oxford University
press 2013, page 419

14Mark Thoma, What Causes Employment to Lag Output in Recoveries?, CBS money watch, avail-
able at http://www.cbsnews.com/news/what-causes-employment-to-lag-output-in-recoveries/, reviewed
on 30.5.2016
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Figure 8: TFP, its Linear Regression Line and the Estimation Error

Coe�cient Standard Error (SE) t-quotient p-value
Constant -0.797016 0.0107509 -74.14 1.50e-162

time -0.00145180 8.00045e-05 -18.15 2.85e-46

Table 4: The Regression Parameters

For testing the significance of both variables, either the t-quotient or the p-value can
be used. Both measures show significance of both parameters at a 1% significance level.
This resulted in the following regression function:

Â

t

= �0.797016 +�0.00145180 ⇤ t

where t represents one quarter.

Since data from Q1:1960 until Q4:2017 was used, T=232 points in time were obtained.
The properties of the above regression were:

Average of estimated variables �0.966151 R

2 0.588769
Sum of quad. res. 1.531904 SE of the regression 0.081612
F (1, 230) 329.2968 P-value(F ) 2.85e–46

Subtracting values estimated by the regression from actual data yields the detrended
TFP. Since detrended TFP was recovered as residual, this operation equals:

u

t

= A

t

� (�0 + �1 ⇤ t) equal to u

t

= A

t

� Â

t

Now, a first order autoregressive process had to bee applied to the detrended TFP
û

t

= ⇢u

t�1 + ✏ in order to recover the metrics that will be used in the coming models.
The metrics were recovered as:

⇢

A

= 0.956538 and �

✏

= 0.010958
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1.4.2 Second Approach

The alternative approach was based on a production function that included labor and
positive but decreasing marginal products. It had to be rearranged to solve for TFP as
well.

Y

t

= e

A

t

K

0.36
t

N

0.64
t

A

t

= ln(Y
t

)� 0.36ln(K
t

)� 0.64ln(N
t

)

Recovering TFP with the alternative approach and running a linear regression on it
yielded:
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Figure 9: TFP 2, its Linear Regression Line and the Estimation Error

Coe�cient Standard Error (SE) t-quotient p-value
Constant 9.11759 0.0171364 532.1 0.0000

time 0.00373183 0.000127524 29.26 1.71e-79

Table 5: The Regression Parameters

For testing the significance of both variables, one can again use either the t-quotient
or the p-value. Both measures show significance of both parameters at a 1% significance
level as well. This yielded the following regression function:

Â

t

= 9.11759 + 0.00373183 ⇤ t

The statistical properties of the regression were:

Average of estimated variables 9.552352 R

2 0.788287
Sum of quad. res. 3.892098 SE of the regression 0.130085
F (1, 230) 856.3740 P-value(F ) 1.71e–79

After running the first order autoregressive process û
t

= ⇢u

t�1+ ✏ on the TFP-residuals,
which were recovered in the same way as before, the following metrics were received:

⇢

A

= 0.971296 and �

✏

= 0.010987
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2 The Simple Stochastic RBC Model

This section covers the calibration of the simple stochastic RBC model and the evalua-
tion of the simulation‘s statistics.

The considered model is defined as:

max
(C

t

,I

t

,K

t

)1
t=0

E0
P1

t=0 �
t

logC

t

s.t.

C

t

+ I

t

= ✓exp(A
t

)K
t

K

t+1 = (1� �)K
t

+ I

t

K0 given

Its solution was given by

K

t+1 = �[(1� �)K
t

+ ✓exp(A
t

)K
t

]

2.1 Calibrating the Model

2.1.1 First Procedure

Building upon the solution of the model, the normalization parameter ✓ had to calibrated
by rearranging the model‘s solution in steady state.
Being in steady state, the solution becomes

K = �[(1� �)K + ✓exp(0)K]

since

K

t

= K

t+1 = K and A

t

= 0 8t

Which then can be rearranged to:

1
�

� 1 + � = ✓

Since quarterly data was used in the first part, � = 0.99 and � = 0.025 are the rele-
vant parameters. This allows to solve the equation above:

1
0.99 � 1 + 0.0225 = 139

3960 = ✓

Now the three ratios I

K

,

K

Y

and I

Y

that describe the steady state can be calculated:
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K = (1� �)K + I Y = C + I = ✓exp(A)K I

Y

= I

Y

⇤ K

K

1 = (1� �) + I

K

Y

K

= ✓exp(0) I

Y

= I

K

⇤ K

Y

I

K

= �

K

Y

= 1
✓

I

Y

= �

✓

I

K

= 0.025 K

Y

= 3960
139

I

Y

= 0.025 3960
139 = 99

139

2.1.2 Second Procedure

This procedure assumes K

Y

= 12. Since K

Y

= 1
✓

, ✓ = 1
12 .

Since � = 0.99 is still assumed, inserting this finding in the equation, used to determine
✓ in the first procedure, enabled to solve for �.

1
�

� 1 + � = ✓

� = 1
12 � 1

0.99 + 1 = 29
396

2.2 Simulating the Model in Excel

In order to create the described model in Excel, a random series of shocks of the size �

✏

or ��

✏

, each with probability 0.5 had to be created.
This was done using the Excel function:

=IF(RANDBETWEEN(0;1000000)/1000000<0.5;-B4;B4)

Where the cell B4 contained the corresponding �

✏

. The parameters recovered by the
AR(1) process in subsections 1.4.1 and 1.4.2 have to be used in order to create values
for A

t

following A

t

= ⇢A

t�1 + ✏.

Since two di↵erent approaches to uncover TFP were applied, this has to be done for
both pairs of parameters. The other relevant parameters were just calculated by using
two di↵erent approaches as well. This implies four possible combinations. The model
therefore had to be run four times in total.
Thus, in the following analysis, the model with di↵erent calibrations will be labeled as
follows, indicating which results were used for the simulation:
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Name Method used to recover TFP Method of calibration
TFP1 M1 The first method The first method
TFP1 M2 The first method The second method
TFP2 M1 The second method The first method
TFP2 M2 The second method The second method

Table 6: Names of the Combinations

It is assumed that A1 = 0 and K1 = 1. Based on these assumptions, it was possible
to construct timeseries for A

t

,K

t

, I

t

, Y

t

and C

t

.
K

t+1 can be generated using the solution of the model. Then Y

t

can be calculated using
the production function. I

t

can be generated by rearranging the capital accumulation
equation. Finally, C

t

can be recovered as the residual di↵erence between Y

t

and I

t

.

2.3 Evaluating the Model‘s Performance

Before the evaluation, logs had to be taken and detrending had to be conducted. After-
wards the ratios, used to evaluate the performance of the given models, were calculated.

2.3.1 How to Handle the Data

First, the decision had to be made if generating 200 values for each variable (I) was
su�cient, or if creating 300 and deducting the first 100 in order to control for initial
conditions that might create a bias (II) was necessary.
In order to make a confident decision, the analysis of standard deviations was created
for both ways and the results were compared. It became clear that the second approach
was favorable since all standard deviations came closer to the observed values.

2.3.2 Standard Deviation

The recovered standard deviation yields the first interesting results. No calibration
method was able to match every variable‘s standard deviation perfectly, but some of
them were able to meet the observed values fairly well.
An example constitutes TFP 1 M 2 and its standard deviation for capital. While all
other approaches failed to deliver the observed volatility, this model did a remarkably
good job. TFP 1 M 1 got very close in the standard deviation of GDP, outperforming
all other models.
It is noticeable that no model was able to fully replicate the higher volatility observed
in investment or consumption to their full extend.
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variable Obs. TFP 1 M 1 TFP 1 M 2 TFP 2 M 1 TFP 2 M 2
Y 0.0153 0.0158 0.0162 0.0118 0.0127
C 0.0123 0.0021 0.0046 0.0017 0.0034
K 0.0049 0.0021 0.0047 0.0017 0.0034
I 0.0343 0.0221 0.0182 0.0164 0.0143

Table 7: Standard Deviation Across all Variables

The afterwards computed relative standard deviation yields the result that all ap-
proaches generated measures for capital and consumption that are less volatile than
GDP but very close to one another. Investment is more volatile than GDP. This partly
matches the observations and modern theory, although the values are not as big as ob-
served.

variable Obs. TFP 1 M 1 TFP 1 M 2 TFP 2 M 1 TFP 2 M 2
Y 1.0000 1.0000 1.0000 1.0000 1.0000
C 0.8002 0.1315 0.2874 0.1482 0.2682
K 0.3222 0.1299 0.2882 0.1469 0.2682
I 2.2385 1.3914 1.1228 1.3861 1.1246

Table 8: Relative Standard Deviation Across all Variables

2.3.3 Correlation with GDP

Concerning the correlation, TFP 1 M 2 and TFP 2 M 2 again came closest to the ob-
served values for capital and consumption, but they still created values with a far lower
correlation than actually observed.
The correlation of investment with GDP was overestimated by all four models by nearly
the same amount. The correlation of consumption and capital with GDP was underes-
timated by all four approaches.

Variable Obs. TFP 1 M 1 TFP 1 M 2 TFP 2 M 1 TFP 2 M 2
Y 1.0000 1.0000 1.0000 1.0000 1.0000
C 0.7454 0.303 0.4103 0.2993 0.4098
K 0.3086 0.0415 0.1348 0.0651 0.1144
I 0.8601 0.9993 0.9995 0.9987 0.9995

Table 9: Correlation with GDP Across all Variables

2.3.4 Autocorrelation

In this section, the recovered autocorrelations will be analyzed. The tables are organized
after the variable they are covering in order to provide an easy way to compare the
displayed results.
First, the autocorrelation of GDP will be displayed:
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The approaches TFP 1 M 1 and TFP 1 M 2 came closest to the observed autocorrela-
tion but were still producing values that are a bit to large. TFP 2 M 1 and TFP 2 M 2
first underestimated autocorrelation, but came closer to observation with increasing lag.
Overall, the autocorrelation of output was simulated quite realistically.

Lag Obs. TFP 1 M 1 TFP 1 M 2 TFP 2 M 1 TFP 2 M 2
1 0.7789 0.7728 0.7891 0.6071 0.6565
2 0.5514 0.5783 0.6232 0.3849 0.4252
3 0.3275 0.3726 0.4463 0.2492 0.2105
4 0.0967 0.1777 0.2474 0.1109 0.0895
5 -0.0611 0.0513 0.0401 -0.0123 -0.0579

Table 10: Autocorrelation of GDP

Autocorrelation of consumption was highly overestimated by all four models.

Lag Obs. TFP 1 M 1 TFP 1 M 2 TFP 2 M 1 TFP 2 M 2
1 0.5926 0.9431 0.9516 0.9147 0.9483
2 0.3981 0.8336 0.8393 0.7944 0.8363
3 0.2782 0.6844 0.6777 0.6536 0.6847
4 -0.0167 0.5142 0.4803 0.5028 0.5161
5 -0.1289 0.3373 0.2653 0.3529 0.3434

Table 11: Autocorrelation of Consumption

The autocorrelation of capital was overestimated by all approaches. With increasing
lag, the simulated values converge to those observed.

Lag Obs. TFP 1 M 1 TFP 1 M 2 TFP 2 M 1 TFP 2 M 2
1 0.7196 0.9444 0.9524 0.9164 0.9474
2 0.4721 0.8342 0.8406 0.7979 0.8365
3 0.3306 0.6879 0.6802 0.6594 0.6884
4 0.3065 0.5201 0.4855 0.5115 0.5217
5 0.2829 0.3443 0.2723 0.3657 0.3486

Table 12: Autocorrelation of Capital

The autocorrelation of investment was underestimated by all four approaches with
TFP 1 being closer to the observation than TFP 2.
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Lag Obs. TFP 1 M 1 TFP 1 M 2 TFP 2 M 1 TFP 2 M 2
1 0.8245 0.7709 0.7861 0.6014 0.6516
2 0.6465 0.5753 0.6193 0.3761 0.4184
3 0.4713 0.3702 0.4424 0.2411 0.2033
4 0.2897 0.1767 0.2436 0.1046 0.0832
5 0.1364 0.0511 0.0363 -0.0192 -0.0639

Table 13: Autocorrelation of Investment

Plotting the variables allows for an even more convenient comparison:
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2.3.5 Lead and Lag Analysis

The crosscorrelations of all variables with GDP over time were analyzed through imple-
menting a lag in either It, Kt or Ct. In order to provide an easy way to compare the
variables, they are organized in tables covering each variable individually as well.

While it was observed that consumption is neither a leading or lagging indicator, all
four approaches generated a lagging consumption. For the first method to recover TFP,
the correlation with current GDP is greatest for Ct+4. For the second method it is one
period closer to reality with Ct+3.
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Lag Obs. TFP 1 M 1 TFP 1 M 2 TFP 2 M 1 TFP 2 M 2
t-5 -0.0029 -0.5522 -0.6101 -0.4065 -0.4194
t-4 0.1415 -0.4807 -0.4892 -0.3491 -0.3582
t-3 0.3582 -0.3582 -0.3157 -0.2681 -0.2589
t-2 0.4621 -0.1852 -0.1082 -0.1385 -0.0976
t-1 0.6063 0.0328 0.1281 0.0286 0.1149
t 0.7457 0.3030 0.4103 0.2993 0.4098

t+1 0.4863 0.4891 0.6043 0.4404 0.5762
t+2 0.3224 0.6212 0.7316 0.5061 0.6577
t+3 0.1709 0.6789 0.7992 0.5435 0.6658
t+4 -0.0222 0.6842 0.8012 0.5257 0.6369
t+5 -0.1102 0.6578 0.7450 0.4842 0.5658

Table 14: Crosscorrelation of Consumption

As observed, the model generated a capital stock that is a lagging variable.
For the first method to uncover TFP, the highest correlation is observed for Kt+5. The
second method to uncover TFP yields a capital that has the highest correlation with
current GDP for Kt+4.

Lag Obs. TFP 1 M 1 TFP 1 M 2 TFP 2 M 1 TFP 2 M 2
t-5 -0.2111 -0.5923 -0.6757 -0.4237 -0.4373
t-4 -0.1443 -0.5522 -0.6086 -0.3937 -0.4194
t-3 -0.0479 -0.4778 -0.4818 -0.3435 -0.3515
t-2 0.0804 -0.3536 -0.3114 -0.2417 -0.2474
t-1 0.2437 -0.1789 -0.1064 -0.1213 -0.0928
t 0.4071 0.0415 0.1348 0.0651 0.1144

t+1 0.5338 0.2993 0.4110 0.3095 0.4095
t+2 0.6087 0.4915 0.6009 0.4326 0.5749
t+3 0.6324 0.6089 0.7295 0.5057 0.6552
t+4 0.6088 0.6687 0.7932 0.5221 0.6637
t+5 0.5545 0.6762 0.7967 0.5086 0.6354

Table 15: Crosscorrelation of Capital

For investment, the findings are that, after considering the deviations of the corre-
lations from the observed ones, the change in crosscorrelation generated by the model
follows the changes in crosscorrelation that were observed. That is, having a coincident
investment in capital (or fixed assets).

18



Lag Obs. TFP 1 M 1 TFP 1 M 2 TFP 2 M 1 TFP 2 M 2
t-5 0.0317 0.0742 0.0621 0.0023 -0.0446
t-4 0.1632 0.1994 0.2681 0.1252 0.1027
t-3 0.3420 0.3911 0.4638 0.2614 0.2220
t-2 0.5083 0.5919 0.6358 0.3931 0.4341
t-1 0.6977 0.7801 0.7955 0.6120 0.6613
t 0.8607 0.9993 0.9995 0.9987 0.9995

t+1 0.7811 0.7623 0.7786 0.5945 0.6459
t+2 0.6478 0.5605 0.6059 0.3662 0.4088
t+3 0.4722 0.3506 0.4242 0.2277 0.1912
t+4 0.2766 0.1542 0.2223 0.0893 0.0695
t+5 0.0889 0.0276 0.0140 -0.0343 -0.0774

Table 16: Crosscorrelation of Investment

It is again possible to plot the results in graphs in order to simplify the comparison
between observed values and the generated ones:
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2.4 Conclusion

After calculating, comparing and interpreting the statistics of the model-generated data,
a conclusion about the validity of the simple stochastic RBC model can be drawn.

It is to say that the standard deviation and relative standard deviation were match-
ing the basic findings in the data but not to its full extend. This essentially means that
the model generated values with the characteristics �

K

⇡ �

C

< �

Y

< �

I

.

The model was also able to replicate the very basic findings in terms of correlation
(⇢

K,Y

< ⇢

C,Y

< ⇢

I,Y

) as well. But in terms of absolute values there is still a big gap
between the observed values and the generated ones.

In terms of autocorrelation, only GDP and investment for the TFP 1 method was mea-
sured appropriately. All other variables were either over- or underestimated.

Concerning the lead and lag analysis, the model yielded results for consumption that
do not coincide with the previous findings and modern business cycle theory.

The di↵erent approaches to recover TFP did not yield great di↵erences in the statis-
tics. The first method to recover TFP actually performed marginally better than the
second. The small di↵erence in results comes from both parameters being very close to
each other.

These findings favor the conclusion, that the used simple stochastic RBC model might
be able to replicate the very basic statistics but does not describe reality to its full extent.

Evidently, there is room for improvement of the model. One could for example change
the production function. Taking labor into account should improve the quality tremen-
dously. It would also generate an additional variable to evaluate the model‘s performance.
Furthermore, incorporating positive but decreasing marginal products with respect to
capital and labor should yield better results. The nature of the shocks could be changed
as well. A normally distributed shock would allow for rare, large outliers that appear
in reality (i.e. the oil price shock) and thus describe the nature of the shocks in a more
realistic way.
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3 The RBC Model with Endogenous Labor

This sections covers the solution and evaluation of an RBC model with endogenous la-
bor. The model is defined as:

max
(C

t

,I

t

,K

t

,N

t

)1
t=0

E0
P1

t=0 �
t[logC

t

� N

2
t

2 ]

s.t.

C

t

+ I

t

= exp(A
t

)K0.36
t

N

0.64
t

K

t+1 = (1� �)K
t

+ I

t

K0 given

This creates a consumption-leisure tradeo↵. There are two ways to solve maximiza-
tion problems like this. The first approach is to solve the model by hand, the second is
to build a computer model, that solves the equations by itself.

3.1 Solving the Model by Hand

Since this approach was not used to create the data that will be displayed later on, this
section is dedicated to show the general procedure in a shortened manner. The approach
is mainly based on a guide published by John H. Cochrane15. The first two steps are
required to solve the model in Dynare as well.

3.1.1 Combining the Constraints

I

t

= K

t+1 � (1� �)K
t

Y

t

= I

t

+ C

t

= K

t+1 � (1� �)K
t

+ C

t

In order to build the Lagranian, the constraint needs to be equal to zero.

0
!
= K

t+1 � (1� �)K
t

+ C

t

� exp(A
t

)K0.36
t

N

0.64
t

3.1.2 Setting up the Lagrangian and Deriving the FOCs

L = E0
P1

t=0 �
t[logC

t

� N

2
t

2 ]� �

t

�

t[K
t+1 � (1� �)K

t

+ C

t

� exp(A
t

)K0.36
t

N

0.64
t

]

Now, partial derivatives with respect to C

t

,K

t+1, Nt

and �

t

have to be calculated:

15John H. Cochrane, Solving real business cycle models by solving systems of first order conditions,
April 8, 2001, available at http://faculty.chicagobooth.edu/john.cochrane/research/papers/kpr2a.pdf

21



@L
@C

t

= �

t

1
C

t

� �

t

�

t

!
= 0

1

C

t

= �

t

(1)

@L
@K

t+1
= ��

t

�

t � �

t+1
E

t

[�
t+1(�(1� �)� 0.36exp(A

t+1)K
�0.64
t+1 N

0.64
t+1 )]

!
= 0

1

C

t

= �E

t


1

C

t+1
((1� �) + 0.36exp(A

t+1)K
�0.64
t+1 N

0.64
t+1 )

�
(2)

@L
@N

t

= �

t(�N

t

)� �

t

�

t(�0.64exp(A
t

)K0.36
t

N

�0.36
t

)
!
= 0

N

t

= 0.64
1

C

t

exp(A
t

)K0.36
t

N

�0.36
t

(3)

@L
@�

t

= ��

t[K
t+1 � (1� �)K

t

+ C

t

� exp(A
t

)K0.36
t

N

0.64
t

!
= 0

K

t+1 = (1� �)K
t

� C

t

+ exp(A
t

)K0.36
t

N

0.64
t

(4)

3.1.3 Expressing FOCs in Terms that do not grow in Steady State

This is a simple rearrangement exercise:

From(2) :

1 = �E[ C

t
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⇤ ((1� �) + 0.36exp(A

t+1)K
�0.64
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t+1 as:
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From(4) :
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3.1.4 Characterizing the Nonstochastic Steady State

Assuming that capital and consumption grow at rate G = 1+g in steady state.

1 = �G

�1
R (5)

R = 0.36exp(A)

✓
N

K

◆0.64

+ (1� �) (6)

N = 0.64
exp(A)
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✓
K
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◆0.36

(7)

G = (1� �) + exp(A)

✓
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◆0.64

� C

K

(8)

N can be referred to as the fraction of time spent working and is thus constant. The
proposed typical values range from 1

4 to 1
3 . The return equation R = 1+r is not growing

in steady state as well.

3.1.5 Linearizing Around the Steady State

Before being linearized, logs of the values in question had to be taken. While doing so,
new notation has been introduced, which defines:

x = ln(X); x̃
t

= ln(X
t

); x
t

= ln(X
t

)� ln(X)

Afterwards, a first order Taylor expansion can be applied in order to linearize around
steady state.

from (5): 1 = �E

h
C

t

C

t+1
⇤R

t+1

i

Taking logs and setting everything as the power of e at the same time:

1 = �E[exp(c̃
t

� c̃

t+1) ⇤ exp(ert+1)]

Taking the Taylor expansion:
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Taking logs and setting everything as the power of e at the same time:
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The Taylor approximation and simplification of its result yields:
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t

) = 0.64exp(exp(ã
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The Taylor approximation and simplification of its result yields:
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Summarizing the results:
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t
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t+1 = (r + �)(exp(a
t+1) + 0.64n

t+1 � 0.64k
t+1) (10)
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Substituting (10) into (9) by dividing (10) by R yields:
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Simplifying the constants to b-values:
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This enables to organize the system using algebra matrix notation.
Directly substituting in the equation for n
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Rearranging to have all values that a↵ect the t+1 values on the lefthand side and every-
thing that a↵ects the variables in t on the righthand side:
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The matrices within the parentheses can be added up, since 3x3 matrices are the results
of the multiplication. In order to provide equations that are easier to read, they can be
summarized into A and B matrices.
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Multiplying with the inverse of A then results in a system of equations that describes
future values, only depending on current values of the same variables:
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Solving this yields the following equations:
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3.1.6 Campbell‘s Method to Solve the System

It was now possible to apply Campbell’s method to the problem by first summarizing
the di↵erent b coe�cients to d coe�cients:
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The assumption that consumption is a linear function of the state variables k
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Substituting the guess into the set of linear equations:
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It is now possible to simplify by combining (4) and (6) while rearranging (5):
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Simplifying the combined equation and solving for 0:
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This must hold for every value of k and a. This implies, that each term must be zero
separately. Only considering the first part of the formula and rearranging results in:
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Since the pq formula leads to two values, it is best to try simulating the model with
both of them to see which result fits best to the real data. Since the value for ⌘

ck

is
already known, it is now possible to rearrange the second term and solve it:
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Now that the model is solved, one can simulate the model based on the two equations:
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It is however still necessary to find values for investment, which can be achieved with a
linear rule for investment:
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One thus has to find values for for the two ratios. First, the Y
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ratio needs to be found
in order to receive the C

K

ratio. This follows from rearranging (6). The result can then
be used to recover the I

K

ratio, that can be used to solve for the Y

I

ratio. Afterwards,
the C

I

ratio can be determined:
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3.1.7 Evaluating the Solution Derived by Hand

The outputs of the model are by definition percentage deviations from steady state and
thus strongly depend on the estimated steady state growth rate.
It is assumed, that all variables grow at the same rate in steady state. Under- or overes-
timating the growth rate has drastic implications on the performance of the model. The
constant steady state values have to be estimated as well in order to simulate the model.

All the required estimations reduce the quality and reliability of the results drastically
in hindsight of the model‘s performance.
In order to not base the evaluation of the model on such uncertainties, it was decided
to simulate the model by using Dynare16. This allowed to skip the estimation of steady
state growth rates and constant values.

3.2 Solving the Model in Dynare

In order to receive a solution, the following code had to be written:

Dynare di↵erentiates between endogenous and exogenous variables. They thus need
to be defined separately:

var y c k i n a;
varexo e;

Afterwards, the parameters used by the model have to be defined and assigned to specific
values. Since the calibration methods did not seem to have a great impact on the quality

16available at http://www.dynare.org
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of the simulation, it was decided to only run the simulation for the first approach and
not twice:

parameters alpha beta delta rho sigma;
alpha = 0.36;
beta = 0.99;
delta = 0.025;
rho = 0.971296;
sigma = 0.010987;

Where sigma and rho were taken from the AR(1) process from the second procedure
to recover TFP. Now, the model needed to be defined by the first order conditions and
market clearing conditions. It is essential to have as many equations as endogenous
variables, otherwise the model can not be solved for. Dynare does the linearization
itself, but not log-linearization as required for comparable statistics. The first order
conditions thus had to be rewritten in terms of exp(x). This way, exp(x) was treated
as the level of the variable, whereas x was the natural logarithm17. This procedure yields:

model;
(1/exp(c)) = beta*(1/exp(c(+1)))*((1-delta)+alpha*(exp(k)̂(alpha-1))*(exp(exp(a(+1)))*exp(n(+1))̂(1-

alpha)));
exp(n) =(1/exp(c))*(1-alpha)*(exp(k)̂alpha)*(exp(exp(a)))*(exp(n)̂(-alpha));
exp(c)+exp(i) = exp(y);
exp(y) = (exp(k)̂alpha)*exp(exp(a))*(exp(n)̂(1-alpha));
exp(i) = exp(k)-(1-delta)*exp(k(-1));
exp(a) = rho*exp(a(-1))+e;
end;

Next on, the steady state guesses had to be defined. Dynare needs guesses that do
not di↵er too much from their real value in order to simulate the model. The following
guesses are rounded results that were received after running the non-log model, put into
logs:

initval;
k = log(35);
c = log(2.6);
n = log(0.9);
a = 0;
e = 0;
end;

Now, the exogenous stochastic shock had to be implemented. The shock‘s variance

17Eric Sims, Graduate Macro Theory II: Notes on Using Dynare, University of Notre Dame, Spring
2011 available at http://www3.nd.edu/ẽsims1/using dynare.pdf
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needed to be defined. This follows:

shocks;
var e = sigmaˆ2;
end;

Finally, the simulation had to be started by writing the last lines of code:

steady;
stoch simul(irf=200, order= 1, hp filter=1600);

By writing the hp filter=1600 command, Dynare automatically applied a Hodrick-Prescott
filter to the data and presented the statistics of the cyclical components. The model could
thus be evaluated immediately.

3.3 Evaluating the Model‘s Performance

The irf=200 command plotted the impulse response functions of the endogenous vari-
ables. Since Dynare uses theoretical moments derived from the linear Gaussian state
space representation, it does not depend on sample length18 and by that not on the
amount of shocks. One shock was therefore su�cient for the model to calculate all rele-
vant statistics. The simulated IFRs of the log-variables look as follows:

50 100 150 200
0

0.005

0.01

0.015
y

50 100 150 200
0

0.005

0.01
c

50 100 150 200
0

0.005

0.01

0.015
k

50 100 150 200
-0.05

0

0.05
i

50 100 150 200
-5

0

5 #10
-3 n

50 100 150 200
0

50

100
a

Figure 10: IRFs

18Johannes Pfeifer, University of Mannheim, http://www.dynare.org/phpBB3/viewtopic.php?f=1&t=
8167&p=24205&hilit=number+of+shocks#p24205 , reviewed on 11.6.2016
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3.3.1 Standard Deviation and Correlation with GDP

In terms of standard deviation as well as relative standard deviation, it can be seen that
the model matched the data pretty well. Only the standard deviation of consumption
was underestimated, while the standard deviation for investment was overestimated by
noticeable amounts.

Std. (model) Std. (obs.) Rel. Std. (model) Rel. Std. (obs.)
Y 0.0187 0.0153 1.0000 1.0000
C 0.0072 0.0123 0.3851 0.8002
K 0.0048 0.0049 0.2567 0.3222
I 0.0537 0.0343 2.8717 2.2385
N 0.0061 0.0048 0.3262 0.3165

Table 17: Simulated versus Observed Standard Deviation

Just like in the simple model, correlation between investment and GDP was over-
estimated. This model overestimated all correlations. Nevertheless the di↵erences are
smaller than in the simple model. Labor constitutes an exception as it has a highly
overestimated correlation with GDP.

Corr. (model) Corr. (obs.)
C 0.9449 0.7454
K 0.3496 0.3086
I 0.9919 0.8601
N 0.9811 0.4585

Table 18: Simulated versus Observed Correlation with GDP

3.3.2 Autocorrelation

For output, the model generated values that initially have a lower persistence which is
then slower decreasing than observed. The persistence of consumption and capital was
overestimated. For investment and employment, persistence was underestimated.
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1 2 3 4 5

model

Y 0.7242 0.4886 0.2915 0.1305 0.0028
C 0.7817 0.5801 0.3987 0.2395 0.1033
K 0.9606 0.8651 0.7326 0.5788 0.4165
I 0.7146 0.4732 0.2735 0.1122 -0.0142
N 0.7127 0.4702 0.2699 0.1086 -0.0175

obs.

Y 0.7789 0.5514 0.3275 0.0967 -0.0610
C 0.5926 0.3981 0.278 -0.0167 -0.1289
K 0.7196 0.4721 0.3306 0.3065 0.2829
I 0.8245 0.6465 0.4713 0.2897 0.1364
N 0.7753 0.6369 0.4522 0.2843 0.1470

Table 19: Simulated versus Observed Autocorrelation

Except for capital and consumption, the di↵erences are not of great magnitude. It is
easier to compare the autocorrelations by plotting them:
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Figure 11: Simulated versus Observed Autocorrelation
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3.3.3 Lead and Lag Analysis

Although there are some deviations from the recovered data, there is a huge improvement
in the quality of the data regrading lags:

t-5 t-4 t-3 t-2 t-1 t t+1 t+2 t+3 t+4 t+5

model

C -0.1574 -0.0299 0.1392 0.3550 0.6222 0.9449 0.7812 0,6237 0.4765 0.3425 0,2234
K -0.4569 -0.3929 -0.2880 -0.1344 0.0755 0.3496 0.5303 0.6344 0.6773 0.6728 0,6329
I 0.0648 0.1889 0.3420 0.5260 0.7425 0.9919 0.6808 0.4218 0.2111 0.0445 -0.0829
N 0.0973 0.2187 0.3665 0.5424 0.7472 0.9811 0.6533 0.3836 0.1671 -0.0015 -0.1279

obs.

C -0.0029 0.1415 0.3582 0.4620 0.6063 0.7454 0.4863 0.3224 0.1709 -0.0222 -0.1102
K -0.2111 -0.1443 -0.0474 0.0804 0.2437 0.3086 0.5338 0.6087 0.6324 0.6088 0.5545
I 0.0317 0.1632 0.3420 0.5083 0.6977 0.8601 0.7811 0.6478 0.4720 0.2766 0.0889
N -0.1744 -0.1116 0.0282 0.1853 0.3476 0.4585 0.5227 0.5329 0.4690 0.3569 0.1102

Table 20: Simulated versus Observed Crosscorrelation

Capital is still a lagging variable, since it has its highest correlation with current
output in t+3, just as observed in the real data.
N was simulated not as lagging variable but as coincident which constitutes a shortcom-
ing of the model.
Consumption is now coincident, just as observed.

Again, these findings can be plotted for easier comparison:
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Figure 12: Simulated versus Observed Crosscorrelation
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3.4 Conclusion

Introducing variable labor and positive but decreasing marginal returns of capital and
labor improved the quality of the model drastically. Overall, it came closer to the ob-
served values in all statistical measures compared to the simple stochastic model.

But there is still room for improvement. As it was explained earlier, labor is usually
a lagging variable because of investment in employees by the firms (e.g. on-the-job
training). On the side of the employee, the time consuming search for a job has to be
conducted after the consumption-leisure decision has been made. This very basic fact
was not replicated by the model. Thus, including frictions in the labor market should
create a lagging employment.

Investment goes to physical capital only, not to any other sources. Capital has an even
lower impact on output compared to the simple stochastic model because it now does not
have constant returns to scale anymore. Introducing a model that allows for investment
in human capital would increase the impact of today‘s investment on tomorrows output.
This could help to make investment a leading variable.

Remembering what mainly caused the shock to the Japanese economy during the fi-
nancial crisis in 2008, one could think of another external shock i.e. to the foreign
business climate19. It is open to discuss, whether a model with such an addition would
still fall under the definition of a real business cycle model.

Since only introducing variable labor and positive but decreasing returns of capital and
labor already improved the quality of the model tremendously, it is likely that including
the two modifications mentioned before the additional shock will be su�cient to describe
reality very closely.
It is to see whether this guess holds true or if additional modifications have to be made
that would further increase the complexity of the model.
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